Skip to content Skip to main navigation Report an accessibility issue


NCBI PubMed Bibliography

Google Scholar


  • Simmons, J.R., Estrem, B., Zagoskin, M.V., Oldridge R., Zadegan, S.B., and Wang, J. (2024). Chromosome fusion and programmed DNA elimination shape karyotypes of nematodes. Curr Biol 34, 2147–2161.
  • Estrem, B., Davis, R.E., and Wang, J. (2024). End resection and telomere healing of DNA double-strand breaks during nematode programmed DNA elimination. bioRxiv
  • Wolstenholme A., Andersen E., Choudhary S., et. al. Wang J., Whitehead B., and Williams P. (2024). Getting around the roundworms: Identifying knowledge gaps and research priorities for the ascarids. Adv Parasitol.



  • Dockendorff, T.C., Estrem, B., Reed, J., Simmons, J.R., Zadegan, S.B., Zagoskin, M.V., Terta, V., Villalobos, E., Seaberry, E.M., and Wang, J. (2022). The nematode Oscheius tipulae as a genetic model for programmed DNA elimination. Curr Biol 32, 5083-5098 e5086.
  • Zagoskin, M.V., Wang, J., Neff, A.T., Veronezi, G.M.B., and Davis, R.E. (2022). Small RNA pathways in the nematode Ascaris in the absence of piRNAs. Nat Commun 13, 837.



  • Wang, J., Veronezi, G.M.B., Kang, Y., Zagoskin, M., O’Toole, E.T., and Davis, R.E. (2020). Comprehensive Chromosome End Remodeling during Programmed DNA Elimination. Curr Biol.
  • Easton, A., Gao, S., Lawton, S.P., Bennuru, S., Khan, A., Dahlstrom, E., Oliveira, R.G., Kepha, S., Porcella, S.F., Webster, J., Anderson, R., Grigg, M.E., Davis, R.E., Wang, J., Nutman, T.B. (2020). Molecular evidence of hybridization between pig and human Ascaris indicates an interbred species complex infecting humans. Elife 9.
  • Wang, J., and Davis, R.E. (2020). Ascaris. Curr Biol 30, R423-R425.
  • Yang, Y., Zhang, G., Wu, J., Chen, X., Tong, D., Yang, Y., Shi, H., Yao, C., Zhuang, L., Wang, J., and Du, A. (2020). Recombinant HcGAPDH Protein Expressed on Probiotic Bacillus subtilis Spores Protects Sheep from Haemonchus contortus Infection by Inducing both Humoral and Cell-Mediated Responses. mSystems 5.
  • Tan, J.H., Lautens, M., Romanelli-Cedrez, L., Wang, J., Schertzberg, M.R., Reinl, S.R., Davis, R.E., Shepherd, J.N., Fraser, A.G., and Salinas, G. (2020). Alternative splicing of coq-2 controls the levels of rhodoquinone in animals. Elife 9.
  • Gerhard, A.P., Krucken, J., Heitlinger, E., Janssen, I.J.I., Basiaga, M., Kornas, S., Beier, C., Nielsen, M.K., Davis, R.E., Wang, J., and von Samson-Himmelstjerna, G. (2020). The P-glycoprotein repertoire of the equine parasitic nematode Parascaris univalens. Sci Rep 10, 13586.


  • Liu, J., Zhu, L., Wang, J., Qiu, L., Chen, Y., Davis, R.E., and Cheng, G. (2019). Schistosoma japonicum extracellular vesicle miRNA cargo regulates host macrophage functions facilitating parasitism. PLoS Pathog 15, e1007817.
  • Rozario, T., Quinn, E.B., Wang, J., Davis, R.E., and Newmark, P.A. (2019). Region-specific regulation of stem cell-driven regeneration in tapeworms. Elife 8.


  • Wang, J., Gao, S., Mostovoy, Y., Kang, Y., Zagoskin, M., Sun, Y., Zhang, B., White, L.K., Easton, A., Nutman, T.B., et al. (2017). Comparative genome analysis of programmed DNA elimination in nematodes. Genome Res 27, 2001-2014.
  • Kang, Y., Wang, J., and Davis, R.E. (2017). Nuclei Isolation from Nematode Ascaris. Bio Protoc 7.


  • Kang, Y., Wang, J., Neff, A., Kratzer, S., Kimura, H., and Davis, R.E. (2016). Differential Chromosomal Localization of Centromeric Histone CENP-A Contributes to Nematode Programmed DNA Elimination. Cell Rep 16, 2308-2316.
  • Streit, A., Wang, J., Kang, Y., and Davis, R.E. (2016). Gene silencing and sex determination by programmed DNA elimination in parasitic nematodes. Curr Opin Microbiol 32, 120-127.
  • Zhu, L., Zhao, J., Wang, J., Hu, C., Peng, J., Luo, R., Zhou, C., Liu, J., Lin, J., Jin, Y., et al. (2016). MicroRNAs Are Involved in the Regulation of Ovary Development in the Pathogenic Blood Fluke Schistosoma japonicum. PLoS Pathog 12, e1005423.



  • Avasarala, S., Van Scoyk, M., Wang, J., Sechler, M., Vandervest, K., Brzezinski, C., Weekes, C., Edwards, M.G., Arcaroli, J., Davis, R.E., et al. (2013). hsa-miR29b, a critical downstream target of non-canonical Wnt signaling, plays an anti-proliferative role in non-small cell lung cancer cells via targeting MDM2 expression. Biol Open 2, 675-685.


  • Wang, J., Mitreva, M., Berriman, M., Thorne, A., Magrini, V., Koutsovoulos, G., Kumar, S., Blaxter, M.L., and Davis, R.E. (2012). Silencing of germline-expressed genes by DNA elimination in somatic cells. Dev Cell 23, 1072-1080.
  • Luo, Y., Dallaglio, K., Chen, Y., Robinson, W.A., Robinson, S.E., McCarter, M.D., Wang, J., Gonzalez, R., Thompson, D.C., Norris, D.A., et al. (2012). ALDH1A isozymes are markers of human melanoma stem cells and potential therapeutic targets. Stem Cells 30, 2100-2113.


  • Wang, J., Czech, B., Crunk, A., Wallace, A., Mitreva, M., Hannon, G.J., and Davis, R.E. (2011). Deep small RNA sequencing from the nematode Ascaris reveals conservation, functional diversification, and novel developmental profiles. Genome Res 21, 1462-1477.
  • Ye, J., Su, L.H., Chen, C.L., Hu, S., Wang, J., Yu, J., and Chiu, C.H. (2011). Analysis of pSC138, the multidrug resistance plasmid of Salmonella enterica serotype Choleraesuis SC-B67. Plasmid 65, 132-140.


  • Kogut, I., Wang, J., Guacci, V., Mistry, R.K., and Megee, P.C. (2009). The Scc2/Scc4 cohesin loader determines the distribution of cohesin on budding yeast chromosomes. Genes Dev 23, 2345-2357.
  • Wang, F., Wang, J., Jian, H., Zhang, B., Li, S., Wang, F., Zeng, X., Gao, L., Bartlett, D.H., Yu, J., et al. (2008). Environmental adaptation: genomic analysis of the piezotolerant and psychrotolerant deep-sea iron reducing bacterium Shewanella piezotolerans WP3. PLoS One 3, e1937.
  • Yu, H., Wang, J., Ye, J., Tang, P., Chu, C., Hu, S., and Chiu, C.H. (2006). Complete nucleotide sequence of pSCV50, the virulence plasmid of Salmonella enterica serovar Choleraesuis SC-B67. Plasmid 55, 145-151.
  • Wang, J., Jiang, Y., Vincent, M., Sun, Y., Yu, H., Wang, J., Bao, Q., Kong, H., and Hu, S. (2005). Complete genome sequence of bacteriophage T5. Virology 332, 45-65.